Boarding House Property Market Trends and Investor Preferences in Boarding House Development: A Comparative Study with Web Scraping
DOI:
https://doi.org/10.37631/jri.v6i1.1379Keywords:
boarding house; market trends; web scraping; business intelligence; investor preferencesAbstract
The development of the education industry and other supporting sectors scattered in the Sleman Regency - Indonesia has influenced the mushrooming of boarding houses. It is essential to use business intelligence for boarding house investors to analyze market trends to produce a boarding property business that is not inferior to its competitors. This study aims to contribute to the boarding house investors to obtain information on the characteristics, relationships, and effects of boarding house facilities on the rental prices set to remain competitive in the market. A total of 658 boarding house data from an e-commerce platform was extracted using business intelligence web scraping to determine the characteristics of the boarding house market trend in Sleman Regency. Multinomial Logistic Regression was used to find out the facilities for rooms, bathrooms, shared services and equipment, and common rooms, making the difference in rental prices for superior, exclusive, intermediate, and standard boarding house classes. The Multinomial Logistic Regression analysis results revealed that boarding houses with high rental prices were more concerned with things directly felt by tenants (everything about their room needs). Meanwhile, boarding houses with affordable rental prices prioritized things that general tenants could use/utilized.
References
Agarwal, S., Ramadani, V., Gerguri-Rashiti, S., Agrawal, V., & Dixit, J. K. (2020). Inclusivity of entrepreneurship education on entrepreneurial attitude among young community: evidence from India. Journal of Enterprising Communities: People and Places in the Global Economy, Vol. 14(2), 299-319. doi: https://doi.org/10.1108/JEC-03-2020-0024
Ahmed Ali, K. (2018). Multi-criteria decision analysis for primary school site selection in Al-Mahaweel district using GIS technique. journal of kerbala university, Vol. 14(1), 342-350.
Amenyah, I. D., & Fletcher, E. A. (2013). Factors Determining Residential Rental Prices. Asian Economic and Financial Review, Vol. 3(1), 39-50.
Attaianese, E., & d’Angelor, R. (2018). Architectural Risk of Buildings and Occupant Safety: An Assessment Protocol. Paper presented at the Congress of the International Ergonomics Association.
Aversa, J., Hernandez, T., & Doherty, S. (2021). Incorporating big data within retail organizations: A case study approach. Journal of Retailing and Consumer Services, Vol. 60, 102447. doi: https://doi.org/10.1016/j.jretconser.2021.102447
Black, W., & Babin, B. J. (2019). Multivariate data analysis: Its approach, evolution, and impact The Great Facilitator (pp. 121-130): Springer.
BPS. (2011). Statistik Migrasi Daerah Istimewa Yogyakarta Hasil Survei Penduduk Antar Sensus 2010. Tersedia pada: https://media.neliti.com/media/publications/49405-EN-migration-statistics-di-yogyakarta-result-of-population-census-2010.pdf
BPS. (2016). Statistik Migrasi Daerah Istimewa Yogyakarta Hasil Survei Penduduk Antar Sensus 2015. www.bps.go.id/publication/2016/01/05/3abe10340a698fa96f538846/statistik-migrasi-daerah-istimewa-yogyakarta-hasil-survei-penduduk-antar-sensus-2015.html
Burov, O. (2019). Human factors/ergonomics in eWorld: methodology, techniques and applications. Paper presented at the International Conference on Applied Human Factors and Ergonomics.
Cullinane, K. (2004). Statistical and Econometric Methods for Transportation Data Analysis. Maritime Economics & Logistics, Vol. 6(2), 187-189. doi: 10.1057/palgrave.mel.9100102
Ghifari, M., & Prihartanti, N. (2017). Pengambilan Keputusan Mahasiswa Dalam Memilih Indekos Di Daerah Universitas Muhammadiyah Surakarta. Universitas Muhammadiyah Surakarta.
Gholipour, H. F. (2020). Urban house prices and investments in small and medium-sized industrial firms: Evidence from provinces of Iran. Urban Studies, Vol. 57(16), 3347-3362. doi: 10.1177/0042098019897887
Hosseini, S. A., de la Fuente, A., & Pons, O. (2016). Multicriteria decision-making method for sustainable site location of post-disaster temporary housing in urban areas. Journal of Construction Engineering and Management, Vol. 142(9), 04016036.
Jeble, S., Kumari, S., & Patil, Y. (2017). Role of big data in decision making. Operations and Supply Chain Management: An International Journal, Vol. 11(1), 36-44. doi: http://doi.org/10.31387/oscm0300198.
Kalteh, H. O., Mortazavi, S. B., Mohammadi, E., & Salesi, M. (2021). The relationship between safety culture and safety climate and safety performance: a systematic review. International Journal of Occupational Safety and Ergonomics, Vol. 27(1), 206-216. doi: 10.1080/10803548.2018.1556976
Kinne, J., & Axenbeck, J. (2020). Web mining for innovation ecosystem mapping: a framework and a large-scale pilot study. Scientometrics, Vol. 125(3), 2011-2041. doi: 10.1007/s11192-020-03726-9
Kusuma, K. F., Indrayana, M., & Jono. (2022). Perbaikan Kualitas Pelayanan Hotel Kartika Chandra dengan Metode Servqual dan Importance Performance Analysis (IPA). Jurnal Rekayasa Industri, Vol. 4(2), 63-79. Doi: 10.37631/jri.v4i2.712.
La Roche, C. R., Flanigan, M. A., & Copeland Jr, P. K. (2010). Student housing: Trends, preferences and needs. Contemporary Issues in Education Research, Vol. 3(10), 45-50. doi: https://doi.org/10.19030/cier.v3i10.238
Lee, J. (2018). Understanding site selection of for-profit educational management organization charter schools. education policy analysis archives, Vol. 26, 77.
Long, J. S. (1997). Regression models for categorical and limited dependent variables (Vol. 7). Thousand Oaks, CA: Sage.
Matta, P., Sharma, N., Sharma, D., Pant, B., & Sharma, S. (2020). Web scraping: Applications and scraping tools. International Journal of Advanced Trends in Computer Science and Engineering, 9(5), 8202-8206.
Melser, D. (2020). Estimating the housing capitalization effects of new infrastructure: Should we be using rents instead of prices? Transportation Research Part A: Policy and Practice, Vol. 138, 402-421. doi: https://doi.org/10.1016/j.tra.2020.04.016
Modgil, S., Gupta, S., Sivarajah, U., & Bhushan, B. (2021). Big data-enabled large-scale group decision making for circular economy: An emerging market context. Technological Forecasting and Social Change, Vol. 166, 120607. doi: https://doi.org/10.1016/j.techfore.2021.120607
Moussa, M., & Abou Elwafa, A. (2017). school site selection process. Procedia Environmental Sciences, Vol. 37, 282-293. doi: https://doi.org/10.1016/j.proenv.2017.03.059
Nantomah, K. K., Haruna, B., & Kaba, J. K. (2017). Predicting Student's Choice of Hostel: An Application of Multinomial Logistic Regression. International Journal of Engineering Science Technologies, Vol. 2(1), 28-36.
Nicolas, C., Kim, J., & Chi, S. (2021). Natural language processing-based characterization of top-down communication in smart cities for enhancing citizen alignment. Sustainable Cities and Society, Vol. 66, 102674. doi: https://doi.org/10.1016/j.scs.2020.102674
O'Donnell, C. J., & Connor, D. H. (1996). Predicting the severity of motor vehicle accident injuries using models of ordered multiple choice. Accident Analysis & Prevention, Vol. 28(6), 739-753. doi: https://doi.org/10.1016/S0001-4575(96)00050-4
Odubiyi, T., Oguntona, O., Oshodi, O., Aigbavboa, C., & Thwala, W. (2019). Impact of Security on Rental Price of Residential Properties: Evidence from South Africa. Paper presented at the IOP Conference Series: Materials Science and Engineering.
Okezone. (2014). Merancang Kos-kosan Standar Sampai Ekslusif. Tersedia pada: https://economy.okezone.com/read/2014/03/27/479/961824/merancang-kos-kosan-standar-sampai-ekslusif#:~:text=Ukuran%20ruangan%20minimal%202.5%20m%20x,dapat%20di%20expand%20sesuai%20kebutuhan
OmniSci. (2020). Business Intelligence. Tersedia pada: https://www.omnisci.com/technical-glossary/business-intelligence
Pallant, J. (2016). A Step by Step Guide to Data Analysis Using SPSS Program (6th ed.). London: Mc Graw Hill Eductaion.
Pradana, P. J., Setijanti, P., & Septanti, D. (2019). Boarding House Preferences by Middle Up Class Students in Surabaya. International Journal of Engineering Research and Advanced Technology, Vol. 5(02), 38-45.
Ratnasari, K. (2019). Mandi Pakai Shower atau Gayung, Mana yang Lebih Baik? Retrieved 26 Desember, 2020 https://artikel.rumah123.com/mandi-pakai-shower-atau-gayung-mana-yang-lebih-baik-54666
Saunders, T., & Tulip, P. (2020). A model of the Australian housing market. Economic Record, Vol. 96, 1-25. doi: https://doi.org/10.1111/1475-4932.12537
Schwab, J. A. (2002). Multinomial logistic regression: Basic relationships and complete problems.
Scott, D., & Langhorne, A. (2012). Believing in Native Girls: characteristics from a baseline assessment. American Indian and Alaska Native Mental Health Research: The Journal of the National Center, Vol. 19(1), 15-36.
Sena, B., Zaki, S. A., Rijal, H. B., Alfredo Ardila-Rey, J., Yusoff, N. M., Yakub, F., Muhammad-Sukki, F. (2021). Determinant Factors of Electricity Consumption for a Malaysian Household Based on a Field Survey. Sustainability, Vol. 13(2), 818. doi: https://doi.org/10.3390/su13020818
Shan, T. (2020). Construction of Real Estate Featured Price Model Based on Massive Transaction Data. Paper presented at the International Conference on Application of Intelligent Systems in Multi-modal Information Analytics.
Singh, A., Garg, S., Kaur, R., Batra, S., Kumar, N., & Zomaya, A. Y. (2020). Probabilistic data structures for big data analytics: A comprehensive review. Knowledge-Based Systems, Vol. 188, 104987. doi: https://doi.org/10.1016/j.knosys.2019.104987
Skoulikaris, C., & Krestenitis, Y. (2020). Cloud Data Scraping for the Assessment of Outflows from Dammed Rivers in the EU. A Case Study in South Eastern Europe. Sustainability, Vol. 12(19), 7926. doi: https://doi.org/10.3390/su12197926
Song, T.-M., & Song, J. (2021). Prediction of risk factors of cyberbullying-related words in Korea: Application of data mining using social big data. Telematics and Informatics, Vol. 58, 101524. doi: https://doi.org/10.1016/j.tele.2020.101524
Sulistyono, S. W., Suliswanto, M.S.W., Dewa, P.K., Santosa, S., & Astina, C. (2022). Revenue optimization strategy through digitizing retribution parking in Kota Batu. Journal of Revenue and Pricing Management, Vol. 21(4), 455-461. doi: 10.1057/s41272-021-00333-y.
Su, S., He, S., Sun, C., Zhang, H., Hu, L., & Kang, M. (2021). Do landscape amenities impact private housing rental prices? A hierarchical hedonic modeling approach based on semantic and sentimental analysis of online housing advertisements across five Chinese megacities. Urban Forestry & Urban Greening, Vol. 58, 126968. doi: https://doi.org/10.1016/j.ufug.2020.126968.
Tabachnick, B. G., Fidell, L. S., & Ullman, J. B. (2007). Using multivariate statistics (Vol. 5): Pearson Boston, MA.
Troy, L., Van den Nouwelant, R., & Randolph, B. (2019). Occupant survey of recent boarding house developments in Central and Southern Sydney. Report commissioned by Southern Sydney Regional Organisation of Councils. Sydney: City Futures Research Institute.
Valérie, P., Beguin, P., & Duarte, F. (2018). Work, Innovation and Sustained Development. Paper presented at the Congress of the International Ergonomics Association.
Xu, H., Liu, Z., Wu, C., Zheng, J., & Zuo, L. (2020). The research on sustainable technology of the traditional house in the Southern area of Hubei province. Journal of Asian Architecture and Building Engineering, Vol. 19(4), 354-366.
Yodhia, A. (2020). 21 Ide Bisnis Paling Menguntungkan dan Cara Memulainya. Tersedia pada: https://strategimanajemen.net/2020/05/25/21-ide-bisnis-paling-menguntungkan-dan-cara-memulainya/
Zambrano-Monserrate, M. A., & Ruano, M. A. (2019). Does environmental noise affect housing rental prices in developing countries? Evidence from Ecuador. Land use policy, Vol. 87, 104059. doi: https://doi.org/10.1016/j.landusepol.2019.104059
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Erlinda Gilberta Wibawa, Parama Kartika Dewa
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License