Penentuan Reorder Point dan Safety Stock pada Consumable Material Berdasarkan Peramalan Menggunakan Artificial Neural Network

Authors

DOI:

https://doi.org/10.37631/jri.v6i1.1220

Keywords:

ANN; stok habis; titik pemesanan kembali; stok pengaman.

Abstract

Ketersedian material guna mendukung kegiatan operasional sangatlah penting, salah satunya adalah kegiatan pemeliharaan pada PT. XYZ. Material-material consumable seperti oxygen, acetylene, elektroda las, dan lain-lain harus selalu tersedia demi menjaga keberlangsungan kegiatan pemeliharaan dan mencegah downtime yang lama. Namun dalam kenyataannya, sering kali material-material yang dibutuhkan mengalami stock out atau stok habis akibat tidak adanya penentuan nilai titik pemesanan kembali atau reorder point (ROP) dan stok pengaman atau safety stock (SS) berdasarkan peramalan permintaan. Material yang stock out akan menghambat pekerjaan pemeliharaan dan berpotensi membuat durasi downtime yang lebih lama. Untuk mengatasi hal tersebut, dibutuhkan analisis untuk meramalkan kebutuhan jumlah material dengan menggunakan metode peramalan deret waktu yaitu, ANN (Artificial Neural Network). Peramalan dari arsitektur terbaik akan menentukan jumlah masing-masing reorder point dan safety stock dari masing-masing material. Hasil yang didapat adalah pada material acetylene menggunakan arsitektur 12-2-1 dengan MSE sebesar 74.79, MAPE sebesar 18.37%, ROP sebesar 39 pcs, dan safety stock sebesar 24 pcs. Kemudian pada material oxygen menggunakan arsitektur 12-4-1 dengan MSE sebesar 224.11, MAPE sebesar 16.51%, ROP sebesar 181 pcs, dan safety stock sebesar 115 pcs.

References

Ali Salamai, A., Abdulrahman Ageeli, A., & M. El-kenawy, E.-S. (2022). Forecasting E-Commerce Adoption Based on Bidirectional Recurrent Neural Networks. Computers, Materials & Continua, 70(3), 5091–5106. https://doi.org/10.32604/cmc.2022.021268

Bhavsar, V. R., & Sinha, B. (2019). SELECTION OF REORDER POINT WHEN DEMAND IS VARIABLE AND ALSO LEAD TIME IS VARIABLE WITH DIFFERENT SIGNIFICANCE LEVEL TO DEMAND DEVIATION & LEAD DEVIATION. INTERNATIONAL JOURNAL OF MANAGEMENT, 10(6). https://doi.org/10.34218/IJM.10.6.2019.022

Cahyati, A. N. (2019). Penentuan Minimum Stock Consumable Spare Part Menggunakan Forecast dan ROP Pada PT. SMART Tbk Surabaya.

Dristiana, F., & Sukmono, T. (2015). PENGENDALIAN PERSEDIAAN BAHAN BAKU OBAT DENGAN MENGGUNAKAN METODE EOQ PROBABILISTIK BERDASARKAN PERAMALAN EXPONENTIAL SMOOTHING PADA PT. XYZ. SPEKTRUM INDUSTRI, 13(2), 181. https://doi.org/10.12928/si.v13i2.2695

Fattah, J., Ezzine, L., Aman, Z., El Moussami, H., & Lachhab, A. (2018). Forecasting of demand using ARIMA model. International Journal of Engineering Business Management, 10, 184797901880867. https://doi.org/10.1177/1847979018808673

Gutierrez, R. S., Solis, A. O., & Mukhopadhyay, S. (2008). Lumpy demand forecasting using neural networks. International Journal of Production Economics, 111(2), 409–420. https://doi.org/10.1016/j.ijpe.2007.01.007

Hu, Y.-C. (2020). Constructing grey prediction models using grey relational analysis and neural networks for magnesium material demand forecasting. Applied Soft Computing, 93, 106398. https://doi.org/10.1016/j.asoc.2020.106398

İfraz, M., Aktepe, A., Ersöz, S., & Çetinyokuş, T. (2023). Demand forecasting of spare parts with regression and machine learning methods: Application in a bus fleet. Journal of Engineering Research, 11(2), 100057. https://doi.org/10.1016/j.jer.2023.100057

Joseph, R. V., Mohanty, A., Tyagi, S., Mishra, S., Satapathy, S. K., & Mohanty, S. N. (2022). A hybrid deep learning framework with CNN and Bi-directional LSTM for store item demand forecasting. Computers and Electrical Engineering, 103, 108358. https://doi.org/10.1016/j.compeleceng.2022.108358

Pujawan & Mahendrawati. (2017). Supply Chain Management. Yogyakarta: ANDI.

Rathipriya, R., Abdul Rahman, A. A., Dhamodharavadhani, S., Meero, A., & Yoganandan, G. (2023). Demand forecasting model for time-series pharmaceutical data using shallow and deep neural network model. Neural Computing and Applications, 35(2), 1945–1957. https://doi.org/10.1007/s00521-022-07889-9

Rodrigues, L. R., & Yoneyama, T. (2020). A spare parts inventory control model based on Prognostics and Health monitoring data under a fill rate constraint. Computers & Industrial Engineering, 148, 106724. https://doi.org/10.1016/j.cie.2020.106724

Shi, J. (2022). Application of the model combining demand forecasting and inventory decision in feature based newsvendor problem. Computers & Industrial Engineering, 173, 108709. https://doi.org/10.1016/j.cie.2022.108709

Tomia, S., Leleury, Z. A., & Aulele, S. N. (2017). PERBANDINGAN METODE JARINGAN SARAF TIRUAN BACKPROPAGATION DAN LEARNING VECTOR QUANTIZATION DALAM DETEKSI HAMA PENGEREK BATANG. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 11(1), 13–26. https://doi.org/10.30598/barekengvol11iss1pp13-26

Zhu, S., Van Jaarsveld, W., & Dekker, R. (2022). Critical project planning and spare parts inventory management in shutdown maintenance. Reliability Engineering & System Safety, 219, 108197. https://doi.org/10.1016/j.ress.2021.108197

Downloads

Published

2024-04-28

Issue

Section

Articles